The ideal which contains unit is whole ring.

$R$ : ring with unity, $J$ : ideal of $R$.

Suppose that unit $u \in J, \exists u\in R$.
Then, $x \in R \implies x \cdot u^{-1} \in R \implies (x \cdot u^{-1}) \cdot u \in J \implies x \in J \  (\forall x \in R)$.
Hence, $R \subseteq J$, and by definition of ideal, $J \subseteq R$.

$\therefore R = J$

댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR