Every zero-divisors in $Z_{p^{n}}$ is a nilpotent element, where p is a prime.

$\mathbb Z_{p^{n}}$ : set of integers modulo $p^{n}$
nilpotent : $a^{n} = 0,\ \exists n \in \mathbb Z^{+}$

Note that $a \in \mathbb Z_{n}$ is zero-divisor if and only if $gcd(a, n) = d,\ (d > 1)$.
Since that $d \mid p^{n}$, it implies $d = p^{k},\ (k < n)$.
$a = ld = lp^{k}$
$a^{n} = (lp^{k})^{n} = (l)^{n}(p^{k})^{n} = (l)^{n}(p^{n})^{k} = 0$.

댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

영화 'Call me by your name'의 OST 중 'Visions of Gideons' 번역 및 해석