Every zero-divisors in $Z_{p^{n}}$ is a nilpotent element, where p is a prime.

$\mathbb Z_{p^{n}}$ : set of integers modulo $p^{n}$
nilpotent : $a^{n} = 0,\ \exists n \in \mathbb Z^{+}$

Note that $a \in \mathbb Z_{n}$ is zero-divisor if and only if $gcd(a, n) = d,\ (d > 1)$.
Since that $d \mid p^{n}$, it implies $d = p^{k},\ (k < n)$.
$a = ld = lp^{k}$
$a^{n} = (lp^{k})^{n} = (l)^{n}(p^{k})^{n} = (l)^{n}(p^{n})^{k} = 0$.

댓글

이 블로그의 인기 게시물

Proof of well-known 'Intersection Of Three Planes' formula.

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

영화 'Call me by your name'의 OST 중 'Visions of Gideons' 번역 및 해석