Every zero-divisors in Z_{p^{n}} is a nilpotent element, where p is a prime.

\mathbb Z_{p^{n}} : set of integers modulo p^{n}
nilpotent : a^{n} = 0,\ \exists n \in \mathbb Z^{+}

Note that a \in \mathbb Z_{n} is zero-divisor if and only if gcd(a, n) = d,\ (d > 1).
Since that d \mid p^{n}, it implies d = p^{k},\ (k < n).
a = ld = lp^{k}
a^{n} = (lp^{k})^{n} = (l)^{n}(p^{k})^{n} = (l)^{n}(p^{n})^{k} = 0.

댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR