If $G$ is self-complementary graph, then $4 \mid |V_{G}|$ or $4 \mid |V_{G}| - 1$

$G$ : undirected simple finite graph, $\bar{G}$ : complementary graph of $G$.
self-complementary : $G \cong \bar{G}$

Between complementary graph,
$$|E_{G}| + |E_{ \bar{G}}| = \frac{|V_{G}|(|V_{G}| - 1)}{2}$$should be satisfied.

If $G \cong \bar{G}$, then $|E_{G}| = |E_{\bar{G}}|$.

Hence, with substitution,
$$
2|E_{G}| = \frac{|V_{G}|(|V_{G}| - 1)}{2} \\[10pt]
4|E_{G}| = |V_{G}|(|V_{G}| - 1) \\[10pt]
$$ If $|V_{G}|$ is even integer, then $|V_{G}| - 1$ is odd integer. Converse is also trivially true.
$$ \therefore 4 \mid |V_{G}| \ \text{or} \ 4 \mid |V_{G}| - 1 $$


댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

선형대수와 군