On the form of ring homomorphism from $Z_{n}$ to itself.

$\phi$ : $Z_{n} \rightarrow Z_{n}$, $x \mapsto ax$, where $a^{2} = a$ is ring homomorphism.

Let $\phi(1) = a$.
Then $a = \phi(1) = \phi(1)\phi(1) = a^{2}$.

Let $x \in Z_{n}$.
Then $\phi(x) = \phi(1 + \dots + 1) = \phi(1)x = ax$.

Hence, our original conjecture is true.

댓글

이 블로그의 인기 게시물

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR

영화 'Call me by your name'의 OST 중 'Visions of Gideons' 번역 및 해석