On the form of ring homomorphism from Z_{n} to itself.

\phi : Z_{n} \rightarrow Z_{n}, x \mapsto ax, where a^{2} = a is ring homomorphism.

Let \phi(1) = a.
Then a = \phi(1) = \phi(1)\phi(1) = a^{2}.

Let x \in Z_{n}.
Then \phi(x) = \phi(1 + \dots + 1) = \phi(1)x = ax.

Hence, our original conjecture is true.

댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR