The intersection of any set of ideals of a ring is an ideal.

R : ring, D = \{I_1, \dots , I_n \} : arbitrary set of ideals of R.

Let's show that S \subseteq D, \bigcap \limits_{I_{i} \in S}{I_{i}} is ideal of R.
Since that D satisfies a - b \in I_{i} (\forall a, \forall b \in \bigcap \limits_{I_{i} \in S}{I_{i}})(\forall I_{i} \in S) and ar, ra \in I_{i} \forall I_{i} \in S.
Hence, by ideal test, it is trivial.



댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR