The intersection of any set of ideals of a ring is an ideal.

$R$ : ring, $D = \{I_1, \dots , I_n \}$ : arbitrary set of ideals of R.

Let's show that $S \subseteq D$, $\bigcap \limits_{I_{i} \in S}{I_{i}}$ is ideal of $R$.
Since that D satisfies $a - b \in I_{i}$ ($\forall a, \forall b \in \bigcap \limits_{I_{i} \in S}{I_{i}}$)($\forall I_{i} \in S$) and $ar, ra \in I_{i} \forall I_{i} \in S$.
Hence, by ideal test, it is trivial.



댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

'Index type not supported yet' error when doing QR factorization using Eigen and SuiteSparseQR