The intersection of any set of ideals of a ring is an ideal.
R : ring, D = \{I_1, \dots , I_n \} : arbitrary set of ideals of R.
Let's show that S \subseteq D, \bigcap \limits_{I_{i} \in S}{I_{i}} is ideal of R.
Since that D satisfies a - b \in I_{i} (\forall a, \forall b \in \bigcap \limits_{I_{i} \in S}{I_{i}})(\forall I_{i} \in S) and ar, ra \in I_{i} \forall I_{i} \in S.
Hence, by ideal test, it is trivial.
Let's show that S \subseteq D, \bigcap \limits_{I_{i} \in S}{I_{i}} is ideal of R.
Since that D satisfies a - b \in I_{i} (\forall a, \forall b \in \bigcap \limits_{I_{i} \in S}{I_{i}})(\forall I_{i} \in S) and ar, ra \in I_{i} \forall I_{i} \in S.
Hence, by ideal test, it is trivial.
댓글
댓글 쓰기