Open interval in $R$ is open set

Let $(a,b)  = \{ x \in R \mid a < x < b\}$
Let $c \in (a, b)$ and define $\epsilon$-neighborhood of $c$ as
$N_\epsilon (c) = \{x \in R \mid \ |x - c| < \epsilon \}$

Take $\epsilon < min\{ b - c, c - a\}$.
$x \in N_\epsilon (c) \Longrightarrow |x - c| < \epsilon \Longleftrightarrow c - \epsilon < x < c + \epsilon$
Since $\epsilon < b - c$ and $\epsilon < c - a$,
$ a < x < b $ could be rewritten as
$a = c - (c - a) < c - \epsilon < x < c + \epsilon < b = c - (b - c) \Longleftrightarrow x \in (a, b) \Longrightarrow N_\epsilon (c) \subseteq  (a, b)$

댓글

이 블로그의 인기 게시물

Linux에서 특정한 디렉토리가 차지하는 용량을 효율적이고, 빠르게 계산하는 법(Fast, efficient way to calculate directory size recursively on linux)

Proof of well-known 'Intersection Of Three Planes' formula.

선형대수와 군